
A Marsupial Robotic System

for Surveying and Inspection of Freshwater Ecosystems

Michail Kalaitzakis
Department of Mechanical Engineering

University of South Carolina
Columbia, SC 29208

michailk@email.sc.edu

Brennan Cain
Department of Computer Science and Engineering

University of South Carolina
Columbia, SC 29208

bscain@email.sc.edu

Nikolaos Vitzilaios
Department of Mechanical Engineering

University of South Carolina
Columbia, SC 29208
vitzilaios@sc.edu

Ioannis Rekleitis
Department of Computer Science and Engineering

University of South Carolina
Columbia, SC 29208

yiannisr@cse.sc.edu

Jason Moulton
Department of Computer Science and Engineering

University of South Carolina
Columbia, SC 29208

moulton@email.sc.edu

Abstract

Freshwater ecosystems are vast areas that are constantly changing and evolving. In order to
maintain the ecosystem as well as the structures located close to bodies of water, frequent
monitoring is required. Although dangerous and time consuming, manual operations are
the conventional way of monitoring such areas. Recently, Autonomous Surface Vehicles
(ASVs) have been proposed to undertake the monitoring task. As any other platform,
ASVs have limitations such as a restricted point of view and access only where the water is
sufficiently deep. Unmanned Aerial Vehicles (UAVs) can fly over any terrain and provide a
“bird’s-eye-view” of the environment. However, UAVs have limited operational time due to
power constraints. Heterogeneous marsupial robotic systems use different types of robots
to augment their operation envelope, taking advantage of their individual strengths. A
marsupial survey system comprised by an ASV and a UAV for freshwater monitoring is
developed and presented in this paper. This system is able to complete long missions and
reach remote locations while also being able to generate detailed maps and inspections of
points of interest. The system was thoroughly tested during a six month period in a number
of field deployments in freshwater ecosystems at Lake Murray and at the Congaree river,
SC, USA, to validate the capabilities of the system.

1 Introduction

Monitoring the condition of bodies of water and nearby structures is an important capability for scientists,
governments, and citizens. Recently, Autonomous Surface Vehicles (ASVs) have been shown to increase the



efficiency of monitoring missions by removing the need for humans to conduct these missions (Karapetyan
et al., 2018; Karapetyan et al., 2019). These systems, however, face their own shortcomings. Because ASVs
are restricted to the water’s surface, they have a low point of view. In marine monitoring, specifically for
algal bloom biomass characterization (Kislik et al., 2018), a low point of view is not efficient due to reflections
and the small size of the well-observable area around the ASV. For inspecting near-water structures such
as docks and bridges, ASVs are unable to fully inspect all surfaces, particularly the tops, which can lead to
improper classification of the state of wear on a structure.

On the other hand, Unmanned Aerial Vehicles (UAVs) are ideal platforms for conducting surveys and
infrastructure inspections (Mathe et al., 2016). UAVs, particularly Vertical Take-Off and Landing (VTOL)
capable ones, are able to provide a higher point of view than an ASV for marine surveying and can be used
to cover all exposed surfaces of a structure. Moreover, they can be equipped with mission specific sensors
for specialized inspection tasks (Kalaitzakis et al., 2019; Jimenez-Cano et al., 2019). However, drones face
issues such as a limited flight endurance (Malyuta et al., 2019) and a low payload capacity.

With a marsupial system, we can overcome the individual weaknesses of the two platforms. Marsupial
systems place a smaller or “weaker” robot on another larger robot to increase the capabilities of the overall
system. In our case, a UAV is placed on-board an ASV, thus extending its total mission time by having
the ASV ferry it to areas of interest. Meanwhile, the drone contributes to the overall system by providing a
higher point of view, i.e. a bird’s-eye-view and the ability to cover all areas of a near-water structure. When
the system is deployed, the following measurements are obtained: the position of the ASV, the position of
the UAV, and the relative pose between the two from a vision based tracker. By taking advantage of the
extra information, we can increase the accuracy of the system and its robustness in the event of GPS signal
loss; a process termed Cooperative Localization (Rekleitis et al., 1997; Rekleitis et al., 1998).

The main contribution of this work lies in the development and field deployment of the proposed system.
Through an extensive period of outdoor testing spanning over 6 months, we show the effectiveness and the
robustness of the system for repeated data acquisition in freshwater environments.

The paper is organized as follows. Section 2 surveys existing work on marsupial robotic systems and their
applications in different domains. Section 3 details the system design including a high-level controller with
safety features, flight control for the missions and the autonomous take-off and landing procedures. Section 4
presents the cooperative localization framework used in this work, followed by a detailed description of the
system control schemes in Section 5. Results from the cooperative localization method used, comparative
results from two different flight controllers tested for the autonomous landing task, as well as results from a
sample survey and infrastructure inspection are then given in Section 6. Section 7 provides a discussion on
lessons learned and future research directions, followed by a conclusion in Section 8.

2 Background

Marsupial robotic systems were first introduced by Anderson et al. in (Anderson et al., 1996) where an
Unmanned Ground Vehicle (UGV) deployed a smaller UGV to inspect areas that the larger robot could not
reach. Murphy et al. (Murphy et al., 1999), were the first to use the term “Marsupial Robot” to describe a
system of a parent and child robot used in this manner. A survey of marsupial systems in several environments
is presented by Hourani et al. (Hourani et al., 2011), where the roles that the marsupial members have are
explained and the advantages of such systems are discussed.

Recently, marsupial systems have gained popularity in the marine robotics domain. Murphy et al. describe
the use of a non-autonomous cooperative system of a UAV and an Unmanned Surface Vehicle (USV) to
survey the areas affected by hurricane Wilma (Murphy et al., 2008). The UAV, operated by a human pilot,
was used to guide the USV around broken sections of bridges and piers. Several missions involved using
the drone to cover areas that the USV could not access, such as roofs of buildings or tops of bridges. This



system set the basis for later papers in which UAVs are used to create cost maps and pinpoint features of
interest for USVs to access.

Lindemuth et al. present an early UAV-USV marsupial system (Lindemuth et al., 2011) as an extension of
(Murphy et al., 2008). A drone is used to provide a higher point of view for tracking objects in the water.
Unlike the prior system, this system carries the UAV on-board the USV while moving to the areas to be
surveyed. This allows the drone to conserve flight time while moving to far-off locations. The drone operator
is able to use cameras on board the two platforms to navigate while the USV operator can use the drone’s
camera to find safe paths to follow. This system though does not support landing back on the USV nor
autonomous cooperative behaviors.

Marques et al. (Marques et al., 2015), present a system of a UAV and an ASV used for environmental
monitoring. The ASV acts as the carrier, while the drone is used either for data gathering or to augment
the field of view of the ASV. In order for the UAV to return to the ASV, the two platforms must cooperate.
While the ASV is trying to visually detect the UAV, the drone does a spiral search trying to detect the ASV.
The UAV is equipped with an AR marker that the ASV uses to locate it and track its pose. To ensure the
safe docking of the UAV, they utilize a safety net around the landing area. However, they report instances
where the UAV gets caught in the net, making it impossible to take-off again and continue its operation.

Marsupial systems have also been proposed in the Search and Rescue domain (Mendonça et al., 2016), where
the UAV is used to provide a high point of view to search for life boats. If a potential target is identified, the
drone hovers around the target while it transmits its location. Once the ASV arrives at the target location,
it starts searching for heat signatures similar to those from human bodies. If a signature is found, then it
relays a color image to the operation center for a human rescue team to be deployed. Since the UAV used
in this application is waterproof, it can land on water to conserve battery if it cannot dock on the ASV. For
the docking procedure, the drone needs to detect the landing platform on the ASV. However, during the
last moments of the landing, since the drone is close to the platform it is not able to detect it. As a result,
the ASV needs to also detect the UAV with an upwards facing camera. This camera though is sensitive to
lens flares and overexposure, causing difficulties in the detection of the UAV. Recent work by Hood et al.
(Hood et al., 2017) using an indoor ground robot and a UAV reported similar problems with an upward
facing camera.

Another notable example of a marsupial system is the Mars 2020 rover and the Mars Helicopter (Balaram
et al., 2018). While the 2020 mission will primarily serve as a technology demonstrator, the helicopter aims
to improve and augment planetary exploration. The helicopter can explore large areas faster than a rover
and it can also be used to provide reconnaissance on target locations and safe to traverse routes. Finally,
the platform could access areas not reachable by a rover and retrieve small science samples.

Previous field work shows that a key characteristic to ensure the continuous and safe operation of a marsupial
system is the effective and repeatable docking and separation procedure. In the proposed system, the
separation and docking procedures are taking-off and landing on a moving platform. While autonomous
take-off is a trivial process for VTOL capable vehicles, autonomous landing is considered one of the most
challenging parts of flight, and it requires precise sensing and accurate control (Gautam et al., 2014; Malyuta
et al., 2019; Brommer et al., 2018). The landing problem is augmented when the landing area is not stable.

Landing on a moving platform has recently captured the interest of the scientific community. The challenges
of this procedure have been demonstrated in space, capturing a satellite (Rekleitis et al., 2007; Christidi-
Loumpasefski et al., 2017); underwater (Myint et al., 2015; Cowen et al., 1997); and with aerial systems which
is the focus of this work (Chaves et al., 2015; Balmer, 2015). A common characteristic in most approaches is
the utilization of vision based positioning techniques for the task. In (Falanga et al., 2017) specifically, the
proposed method uses only visual and inertial data for the position estimation without using any external
infrastructures such as a Global Navigation Satellite System (GNSS) or a Motion Capture (MoCap) system.
Using Visual Inertial Odometry (VIO) to estimate the state of the UAV and pattern recognition to estimate
the position of the landing platform they were able to land a UAV on a moving UGV.



As for the control methods used for the landing task there has been a variety of control schemes proposed. In
(Ghamry et al., 2016), a combination of Sliding Mode Control (SMC) and Linear Quadratic Regulator (LQR)
was used to land a UAV on a moving UGV with the state of the two platforms provided by a MoCap system.
On the more challenging task of landing on an inclined moving platform, a Model Predictive Controller
(MPC) was used in (Vlantis et al., 2015). There again, visual based position estimation is used. Finally,
in (Araar et al., 2017), Proportional-Integral-Derivative (PID) control is used for the landing maneuvers.
Moreover, a landing pad designed using a number of fiducial markers of different sizes is proposed in this
method to allow for a better position estimation from different distances from the target.

In most cases of autonomous landing on moving platforms, the moving platform utilized is a ground vehicle.
While in ground vehicles the roll and pitch motion of the platform is negligible, that is not the case in
boats, as the motion of the water is expected to affect them. In (Sanchez-Lopez et al., 2013), an effort to
create a test-bed that models the motion of a vessel deck was made using a parallel robot. Then, using
on-board computer vision and filtering techniques, they were able to estimate the motion of the platform
from a UAV. A similar deck emulator platform was used in (Wang and Bai, 2018), where a small scale UAV
using computer vision position estimation and a set of PID controllers was able to land on the platform.

The ability to localize one robot based on observations taken by a second robot is termed Cooperative Lo-
calization (Rekleitis et al., 1998), and was first introduced as a cooperative positioning system by Kurazume
et al. (Kurazume et al., 1994; Kurazume and Hirose, 2000). Many approaches were introduced based on the
Kalman (Roumeliotis and Bekey, 2002) or Particle (Burgard et al., 2000) Filters for exploration, localization,
or SLAM (Rekleitis et al., 2001). It is an NP-hard problem (Dieudonné et al., 2010). In this paper the drone
observes the ASV enabling navigation even when GPS signal is lost.

3 System Design

Figure 1: A view of the UAV-ASV marsupial system where the UAV follows the ASV at a safe distance
during field trials.

In this work we developed a marsupial robotic system composed of an ASV, the AFRL Jetyak (Moulton
et al., 2018), and a UAV, the DJI Matrice 1001, both shown in action in Figure 1. Next, a brief overview of
the system is presented.

1https://www.dji.com/matrice100

https://www.dji.com/matrice100


The AFRL Jetyak is an ASV based on the Mokai Es-Kape2, a 3.6 meters long boat with a seven horsepower,
four stroke engine (Moulton et al., 2018). Its operation time can vary between 4 and 18 hours depending
on the speed of the boat and the maximum payload capacity is 163kg. The system is augmented with a
Pixhawk PX4 micro-controller and an RFD900+ radio. This allows for remote and autonomous operations
of the vehicle as well as telemetry broadcasting. The Jetyak system architecture can be seen in Figure 2. For
the purpose of this project, a 1.2m×1.2m landing platform was designed and built in our lab. The platform
is attached to the top of the Jetyak behind the mast. The platform features a quick release mechanism as
well as a folding surface, for easy transportation and quick installation on the boat.
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Figure 2: Block diagram of the ASV system architecture. The blue blocks are open-source ROS layers, the
green blocks are the developed components, the magenta blocks are the hardware peripherals of the ASV
and the cyan one are hardware peripherals of the UAV. The dotted line denotes the use of the cooperative
localization data in the Jetyak controller.

Following the example of (Araar et al., 2017), a bundle of six AR tags (Fiala, 2005) of various sizes is placed
on the Jetyak. Specifically, a set of four AR tags, 52cm × 52cm each, are placed on the landing platform
while a set of two tags, 13cm × 13cm, is attached at the base of the mast. The landing platform bundle
is used to provide a visual tether over long distances while the mast bundle is used when the drone flies in
close proximity to the Jetyak. AR tags were chosen over other fiducial markers like April tags (Olson, 2011;
Wang and Olson, 2016) for their efficient and fast tracking performance. Our experimentation found that in
the deployed hardware on-board the drone, AR tag tracking is providing accurate position measurements at
13Hz while April tag tracking has a lower rate of 5Hz.

The DJI Matrice 100 is a development-focused platform for autonomous aircraft research. The on-board
computer used is a DJI Manifold, based on the NVidia Tegra TK1. A Zenmuse Z3 gimbal camera is attached
for data gathering and visual position estimation, and an RFD900+ radio is used for communications with
the Jetyak and the Ground Control Station (GCS). All the peripheral devices, as well as the UAV’s N1
Flight Control System, are connected to the on-board computer. The computer is able to access the sensor
data and send high level controls to the drone using the DJI Onboard SDK.

The two platforms and the GCS communicate over MAVLink. The connection allows messages to be ex-
changed either directly from one node to the other, or indirectly through another node. The Robot Operating
System (ROS) (Quigley et al., 2009) was used as a middleware to develop the systems for both platforms
as well as the communications between them. Radio broadcasts can be accessed using MAVROS, a ROS
package that provides the communication drivers for MAVLink.

2http://www.mokai.com/mokai-es-kape/

http://www.mokai.com/mokai-es-kape/
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Figure 3: Block diagram of the developed UAV system architecture. The blue blocks are open-source ROS
layers, the green blocks are components developed for this project, the magenta blocks are the hardware
peripherals of the UAV and the cyan one are hardware peripherals of the ASV.

The overall architecture of the UAV system, with its individual components can be seen in Figure 3. The
system is designed in a highly modular way, that allows wrappers to be written for each hardware component,
such as the gimbal camera or the flight control system. This increases the interoperability of the system.

3.1 Visual position estimation using a independently controlled gimballed camera

The most important subsystem of the UAV is the gimballed camera. The camera is being used to gather
data during infrastructure inspections and surveys and most importantly it is used to provide an estimate
of the relative position between the two platforms. While in most cases where cameras are used to provide
position measurements the cameras are rigidly attached on the platform (Sanchez-Lopez et al., 2013; Vlantis
et al., 2015; Falanga et al., 2017), in our case the camera can move independently of the platform.

Having the camera able to move independently of the platform, provides the advantage of being to able to
track the target even in situations where the drone is not facing the boat. Moreover, when the drone flies
close to the platform, even small movements could lead to tracking loss with a stable camera. With a moving
camera though, the gimbal can rotate in order to keep the target always in the camera’s field of view and
thus maximizing the rate of data from the visual position estimation algorithm. By tracking the relative
orientation of the gimbal frame to the body frame, we can transform the position measurements from the
camera frame to the body frame. The UAV used and the gimballed camera with the two coordinate systems
are shown in Figure 4.

In most cases where gimbals are used in UAVs, their role is to compensate for the motion of the UAV and to
keep the camera’s orientation. In our case, the gimbal is independently controlled in order to keep a point of
interest in frame. Two different control scenarios were implemented. First, if the target is already in frame,
the gimbal is rotated as to always keep the target in the center of the image. When the target is not in the
line of sight of the camera but its position is known, then the gimbal moves so that the projection of the
target aligns with the center of the image. In the case of tracking the Jetyak when it is not in the line of
sight of the drone, the position of the boat from the cooperative localization framework is used to control
the gimbal.



Figure 4: The body and camera coordinate systems shown on the UAV. Since the camera is mounted on a
gimbal it is free to rotate relative to the body.

4 Cooperative Localization

Missions in marine and especially in freshwater environments require operating close to vegetation and
large structures. In such environments, GNSS positioning like GPS, Galileo, etc., can be unreliable or even
unavailable. Moreover, on long missions the quality of the GPS measurements is expected to change. At
the same time, these environments are visually challenging with the vegetation generating extreme lighting
variations between shadows and direct sunlight resulting in lens flares and overexposed images, while the
water is generally featureless and there is an increased chance of reflections on the water surface (Chahine
and Pradalier, 2018). To ensure the safety of the autonomous landing and to increase the effectiveness of
navigating in such environments, a robust localization framework is needed that will be able to detect and
reject outliers as well as to adapt to the quality of the sensor measurements.

A cooperative localization method based on a Kalman Filter is used throughout all the experiments in this
work. Both the UAV and ASV, already have a built in algorithm that fuses the GPS position and the inertial
sensor measurements to get a more accurate positioning of the platform. However, since the two systems
use different sensors and are expected to operate in different regions at times, localization based solely on
this data is unreliable for precision maneuvers. Visual position estimation methods such as Visual Odometry
(VO) are often used to increase the accuracy of the localization framework. In marine environments however,
VO is challenging and visual methods that use specific features and patterns are more appropriate in such
cases.

Our main motivation for cooperative localization, is to get an accurate relative position between the two
platforms that is crucial for the precision landing maneuvers. Cooperative localization can also be used
to assist navigation in GPS degraded or even denied environments. For example, when there is a need to
traverse under a large bridge, the drone can be deployed to a position with a better GPS signal and to
provide a more accurate position estimation to the Jetyak by maintaining a visual tether. Once the quality
of the GPS signal has been restored on the Jetyak side, the drone can fly over the bridge and return to land
on the Jetyak.

The designed framework fuses the measured position of the two platforms, the measured velocity of the drone
and the relative position of the platforms acquired from a visual positioning method. As described above,
the Jetyak features a bundle of six AR tags that are detected and tracked to provide the relative position
of the two platforms. During the system setup, it was noted that there was a significant offset between the
measured position of the Jetyak and the measured position of the drone even when the sensors were placed
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Figure 5: The scheme used in the cooperative localization framework. The purple dot is the estimated
position of the drone in the local ENU system while the yellow dot is the estimated position of the Jetyak in
the same system. The orange dot is the measured position of the Jetyak before it is corrected by subtracting
bGPS .

next to each other. Furthermore, the quality of the GPS measurements of the UAV were superior to that of
the Jetyak both indoors and outdoors. As a result, an extra state was added to the filter to track the offset
on a local East-North-Up (ENU) frame.

Figure 5 shows the localization scheme used with:

pUAV,GPS = pUAV + wUAV (1)

pJetyak,GPS = p̂Jetyak + wJetyak (2)

pJetyak = p̂Jetyak − bGPS (3)

where pUAV,GPS is the measured position of the drone with pUAV the true position and wUAV the measure-
ment noise. The measured position of the Jetyak is pJetyak,GPS , with p̂Jetyak the Jetyak position before it
is corrected, wJetyak,GPS the sensor noise, pJetyak the corrected position and bGPS the offset. The state of
the filter is:

x =
[
pTUAV vTUAV p̂TJetyak vTJetyak bTGPS

]T
(4)

where vUAV is the 3-dimensional velocity of the drone on the same ENU frame and vJetyak is the 2-
dimensional velocity of the Jetyak. Since the Jetyak can only move on the surface of the water, only
minor changes in its altitude are expected due to any waves. Thus, its velocity in the z− axis is assumed to
be zero. While the AR tag measurements provide information about both the position and the orientation
of the tag, only the position measurements were used. The attitude of the two platforms was estimated by
using only their on-board sensors. The measurement from the AR tag tracking is finally defined as:

dtag = p̂Jetyak − pUAV − bGPS + wtag (5)

with wtag the noise of the tag measurement.



4.1 Outlier Rejection and Adaptive Measurement Covariance Matrix

To operate safely in marine and freshwater environments and close to structures, the localization framework
must be robust to outliers. Outliers are expected in the GPS position measurements in GPS degraded
environments but more frequently in the tag measurements. Reflections and occlusions in the image usually
result in erroneous measurements that may cause the filter to diverge or the controller to fail. To reject any
outlying sensor measurement, a chi-squared test is implemented (Chambers et al., 2014; Hausman et al.,
2016; Chiella et al., 2019). Using the innovation of the sensor measurement the chi-squared test is:

χ2 = (zi − ẑi)S
−1
i (zi − ẑi) (6)

where zi is the sensor measurement, ẑi is the predicted measurement, Si = HPHT + R is the innovation
covariance matrix for a sensor with observation matrix H, R is the measurement noise covariance matrix and
P is the a posteriori covariance matrix of the Kalman Filter. If the value of χ2 is larger than a predefined
confidence level, then the measurement is rejected and the filter update is skipped.

It is usually assumed that the measurement uncertainty remains constant during the operation of the system.
In our case, however, the uncertainties are expected to change significantly as the mission progresses and
the surrounding environment changes. For example, GPS localization accuracy is expected to degrade close
to large structures and the tag measurement accuracy reduces with the distance between the platforms.

In order to deal with the time-varying uncertainty of measurements, an adaptive filter must be used. Covari-
ance Matching (CM), proposed in (Mehra, 1972), is one of the approaches used in adaptive filters. CM uses
the innovation sequence vi to make the residuals consistent with their theoretical covariances. On a sample
of N measurements, the innovation covariance matrix can be approximated by its sample covariance as:

Si ≈
1

N

N∑
i=1

viv
T
i (7)

and since Si = HPHT +R, the estimated measurement covariance matrix is approximated as:

Ri ≈
1

N

N∑
i=1

viv
T
i −HPHT (8)

where N must be chosen empirically for each sensor to provide some statistical smoothing. Finally, it is
important to note here that a nominal value for Ri should be measured in optimal conditions and Eq. (8)
must only be used to increase Ri.

5 System Control

In this section the different control schemes used will be discussed. First, the state machine for the high level
controls of the system will be explained. Then, a brief introduction to the Jetyak controls will be presented
and finally the UAV controller will be discussed in detail.

5.1 Behaviors State Machine

The high level behaviors of the system are designed as a state machine, shown in Figure 6. Seven main
behaviors are implemented: Ride, Take-Off, Follow, Leave, Return, Land, and Hover. Secondary
behaviors are also implemented to handle specific functions such as waypoint following and spiral search.
Transitioning between the states can be either automatic or manual after a user request. The behaviors and
their functionality are:
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(i) Ride. This is the initial state and is used while the drone is ferried by the Jetyak. In this state, the
UAV is on stand-by, waiting for a request. The motors are ensured to be off to allow for a smooth
ride on the Jetyak and to conserve energy. The colocalization framework is normally operating in
this state to provide the ASV an augmented positioning if needed.

(ii) Take-Off. Every mission starts with a Take-Off request. Once the Take-Off state is requested,
the drone controller starts the motors and the UAV starts ascending. Once a certain altitude is
reached, the behavior state automatically switches to Follow. In the event of a tag loss during the
UAV’s ascent the state will first switch to Follow and the safety features designed for that state
will be utilized.

(iii) Follow. In the Follow state, the UAV controller aims to maintain a visual tether with the ASV
while flying behind it in a safe distance. Moreover, at this position, the UAV can provide a bird’s
eye view of the Jetyak’s surroundings as shown in Figure 7. Through in-lab trials using a MoCap
system it was determined that the position of 2m above the ASV and 1.5m behind has the best tag
reliability. In this position, the tag bundle at the mast and two out of the four tags in the landing
pad are visible. As a safety feature, if the UAV is unable to track the tag for more than 10 seconds,
then the state is either switched to Hover or to Return, depending on the configuration.

(iv) Leave. This is an umbrella state that includes all the activities that the UAV completes when it
does not maintain a visual tether with the Jetyak. In this state, the drone can be requested to move
and operate in a remote location. Using waypoint following control, the drone can fly in patterns
and gather data from areas of interest either for mapping or monitoring purposes. A spiral and



Figure 7: A bird’s eye view image of the ASV and its surrounding environment. Captured from the drone
camera while following the Jetyak.

a quadrilateral coverage pattern trajectory generator are included in this waypoint follow method.
When a mission is completed, the state automatically switches to Hover where the UAV remains
in stand-by until it receives another request.

(v) Return. When the UAV is in the Leave state, the Return state can be requested to move the
drone back in a position close to the Jetyak, where a visual tether can be established. To ensure
a smooth transition between the states, the Return state maintains an internal state machine as
seen in Figure 6. Initially, the Up state moves the UAV to an altitude of 10m that should provide a
safe path for the return flight. Meanwhile, the gimbal controller moves the camera to point towards
the estimated Jetyak position so that a visual tether can be established as soon as possible. Once
in a safe altitude, the state switches to Over where the UAV moves toward the estimated Jetyak
location. Once the UAV approaches the area over the Jetyak, the state switches to Down where the
UAV slowly descents to an altitude of 3m above the ASV where both tag bundles should be visible.
Then, the state switches to Settle and the controller corrects the UAV’s orientation to match the
Jetyak’s heading while it moves the drone to a specified position behind the Jetyak. During the final
descent and positioning, a visual tether needs to be established in order to proceed to the next steps
of the Return state, otherwise the state is switched back to Up and the process repeats. Finally,
once the UAV has descended to a safe altitude above the ASV and a visual tether is established, the
state transitions to Follow.

(vi) Land. This state is used for the docking procedure since it transitions from the Follow to the Ride
state. The drone controller moves the UAV from the Follow position to a safe position above the
landing pad. When the drone is within a predefined area and the velocity of the UAV in the frame of
the ASV is below a threshold, the UAV starts descending until it reaches the landing platform. Once
the drone is resting safely on the Jetyak then the controller switches off the motors and the state
switches to Ride. A landing can only be requested from the Follow position. If the UAV is in any
other state, the Return state needs to be requested first to move the UAV to the Follow position.
For safety reasons, if the visual tether is broken for more than 3 seconds the state is automatically
switched back to Follow.

(vii) Hover. This is a stand-by state where the UAV maintains its position and altitude while it is away
from the ASV. This state is used as a safety measure when the tag is lost in the Follow state so
that the drone will hold its position and altitude until further action can be taken. Moreover, it can
also be used in the case that there is a need to hold position in order to monitor a point of interest.

The operational cycle of the proposed system is graphically represented in Figure 8, where the concept of
operations and the different phases of flight are shown and explained for a sample mission.



 Each inspection mission starts with a
Take-Off request. While navigating through
 the points of interest, the UAV is set to the
Leave state. Upon completion, a Return
request guides the UAV towards the ASV.

A Land state concludes the mission.

The ASV can deploy the UAV and
set it in the Follow state to provide

a bird's eye view in order to traverse
challenging environments.

While the ASV is sailing to the area of interest,
the UAV is on the Ride state, resting on the

landing platform. The colocalization framework
 provides an accurate localization at all times.

During a UAV mission, a Hover state can
be used to hold position whenever needed.

At the same time, the ASV can execute
 its own mission (e.g. bathymetric studies).

Figure 8: Concept design highlighting the characteristics of the UAV-USV marsupial system. For each phase
of the sample mission the relevant high level behavior state is provided.

5.2 Jetyak control

The Jetyak utilizes a Proportional-Integral-Derivative (PID) controller in order to follow a trajectory specified
by waypoints. In a recent work by the authors (Moulton et al., 2019), a controller that dynamically updates
the waypoints in order to compensate for disturbances from wind and current was presented. The same
approach can be used in GPS degraded environments where the Jetyak will correct the waypoints according
to the position reported by the cooperative localization framework.

5.3 UAV flight control

To control the position of the UAV during all mission stages, a Linear Quadratic Regulator (LQR) was
designed. In order to evaluate the performance of our controller, a PID controller was also implemented to
be used as a baseline. To make the comparison fair, a significant amount of time was invested in tuning
both controllers while both of them were tested in the field and were successful on landing the UAV on the
Jetyak.

The drone allows for different types of control inputs. On the horizontal axis, the commands can either be
velocities, roll and pitch angles or roll and pitch rates. On the vertical axis, the control input is the velocity
along the axis and for rotations around the vertical axis, the command is the yaw rate.

The tuning of the controllers started on the hardware-in-the-loop (HIL) simulator provided by DJI and then
gradually moved to indoor flights using a MoCap system to finally reach field trials where they successfully
managed to land the UAV on the platform. The two controllers are described in the following subsections
while the results from their comparison are presented in Section 6.

5.3.1 LQR Controller

To implement the LQR, a model of the system under control is needed. A high-level position controller
was designed on top of the build-in attitude controller. Nevertheless, a model for the closed loop attitude
dynamics needs to be derived. Data from the onboard sensors along with the corresponding RC commands



Parameter Roll (φ) Pitch (θ)
bq̇,q 45 46
bq̇,q̇ 7.2 7.4
cq̇,qr 42.5 44
λp 0.05 0.05

Table 1: Model parameters found through model identification.

were used to derive second order models of the roll and pitch dynamics. The State-Variable Filters (SVF)
approach along with the Generalized Poisson Moment Functions (GPMF) approach were used to estimate
the model parameters (Garnier et al., 2003). The structure used for the model is:[

q̇
q̈

]
=

[
0 1

−bq̇,q −bq̇,q̇

] [
q
q̇

]
+

[
0

cq̇,qr

]
qr (9)

with q representing either the roll (φ) or the pitch (θ) angle and qr the reference signal. By linearizing the
system around the stable state of hovering, the horizontal position dynamics are modeled as second order
system. Around the hovering point, the only force acting on the drone is the gravity. Assuming that there
is some damping relative to the velocity and using the small angle approximation we have:[

ṗ
p̈

]
=

[
0 1
0 −λp

] [
p
ṗ

]
+

[
0
±g

]
q (10)

where p represents either the x axis (+g, q = θ) or y axis (−g, q = φ). The only unknown in the model
is the parameter λp that captures the damping of the system. To estimate this parameter, data from an
OptiTrack MoCap system were used in a non-linear least-squares optimization algorithm.

The parameters for both roll and pitch angles are shown in Table 1. As for the altitude and yaw control, a
second order model for the vertical position z and heading ψ was derived using the vertical velocity uz and
yaw rate uψ as inputs:

[
ψ̇

ψ̈

]
=

[
0 1
0 −bψ̇,ψ̇

] [
ψ

ψ̇

]
+

[
0

cψ̇,ψr

]
uψ (11)

[
ż
z̈

]
=

[
0 1
0 −bż,ż

] [
z
ż

]
+

[
0

cż,zr

]
uz (12)

5.3.2 PID Controller

For the PID case, the selected control inputs were the velocities in the horizontal and vertical axes and the
yaw rate. The input to the controller is the position error on the three axes as well as the desired orientation
of the drone. Since the control inputs are in the body frame, the position error must be also expressed in the
same frame. Thus, the orientation of the drone is used to rotate the body frame to the world frame before
calculating the position error.

As discussed in section 5.1, there are three different states where the drone needs to be in a controlled flight,
Follow, Land and Leave. Each of these states requires a different control approach. For example, in the
Follow state, the drone needs to be able to keep up with a moving boat so it needs to be more aggressive
while in the Return state a smooth flight is more preferable because it will produce better quality surveys
and inspections. For that reason, a gain scheduling approach was followed with three different sets of gains
for the three different states. This is not the case for the LQR controller though, since the LQR was able to
handle all cases with the same tuning.
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Figure 9: Relative position of the two platforms in a GPS degraded environment according to (a) the
OptiTrack Motion Capture system, (b) the cooperative localization framework, and (c) using only the GPS.

6 Experimental Design and Results

The proposed system and its subsystems were thoroughly tested. In this section, the experimental setup for
each test will be discussed and the results will be presented. First, the cooperative localization and controller
comparison experiments in the lab and at the field will be presented. Then, a number of field experiments
will be discussed that demonstrate the system’s effectiveness for surveying and inspection. Videos of the
field experiments presented in this paper are available online at https://tinyurl.com/yxbkkdra.

6.1 Cooperative localization experiments and results

The cooperative localization framework was tested in the lab using an OptiTrack MoCap system to provide
an accurate ground truth. Moreover, since the experiment was done indoors, we were able to emulate a GPS
degraded environment. The aim of this experiment was to test the accuracy of the framework in finding the
relative position between the two platforms in a GPS degraded environment.

For this experiment, the Jetyak was static and the drone was flying in different positions while maintaining
a visual tether. Specifically, using the drone position from the MoCap system, the drone was flying to a
number of pre-specified positions in different altitudes and distances from the tag to see how the distance
may affect the tag measurements and the whole cooperative localization framework. The testing range for
the altitude was from 1.5m to 3.5m and for the horizontal distance was from 2.5m to 4.5m. During the
experiment, the standard deviation for the Jetyak position reported by the GPS was 5.66m in the x-axis,
3.11m in the y-axis, and 17.94m in the z-axis.

Figure 9 shows the relative position of the two platforms according to the MoCap system, the proposed
filter, and using just the GPS measurements. It is clear that in such an environment, using only the GPS
position would not be able to provide an accurate enough relative position for an autonomous landing. On
the other hand, the filter results have a significantly higher accuracy. Moreover, as it visible in Figure 10,
the error does not significantly change with the distance at least at the range that it was tested.

While the GPS positioning usually has a slow drift, the tag measurements are more prone to mis-detections
that could cause aggressive changes in the relative position of the two platforms. Such aggressive changes in
the relative position, especially during the approach and landing maneuvers may lead to the drone crashing.
Reflections is a common source of mis-detections especially in the freshwater domain. Figure 11 shows the
mast tag being reflected on the platform during the approach maneuver and the results on the tag detection
measurements.

https://tinyurl.com/yxbkkdra
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Figure 10: The position error according to (a) the filter results and (b) the GPS results.
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Figure 11: (a) Reflections of the mast tag on the platform is a cause of mis-detections; (b) While the
drone tries to approach the platform and land, the reflections on the platform may cause outliers in the tag
measurements as seen around the 20 and 30 second mark of the experiment.

Using the proposed outlier rejection method such measurements do not affect the filter ensuring the safe
operation of the system. Figure 12 shows the cooperative localization framework with and without the
outlier rejection method. As it can be seen in the figure, the positions of both platforms are affected with
the Jetyak position being affected the most with an error of a few meters.

As an additional test, in one of the field experiments we purposefully took the drone camera out of focus, as
seen in Figure 13, to test the cooperative localization framework and also the designed fail-safe capabilities
of the high-level controller. Having the camera out of focus, the vision based localization was not able to
track the tags for extended periods of time while it was producing less accurate data. While the drone
was initially able to follow the Jetyak, when 10 seconds passed without a new tag measurement then, as
described in section 5.1, the drone initially switches to Hover before it switches to Return. For the Return
behavior, the drone controller uses the platform positions estimated from the localization framework. Thus,
if the framework was not able to discard outliers and adapt to any erroneous measurements provided by the
camera, the system would not be able to continue its operation. However, the system was able to manage this
challenging situation, switch between the different behavior states and finally land safely on the platform.
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Figure 12: (a) The estimated UAV position and (b) the estimated Jetyak position; blue line is without outlier
rejection and red line is with outlier detection.

(a) (b)

Figure 13: A cropped view of the Jetyak from the drone with the camera (a) in focus and (b) out of focus.

6.2 Controller experiments and results

As described in Section 5, both of the developed controllers were tested in the field to make sure that they
were able to successfully land the drone on a moving platform. Initially, both controllers were tuned using a
HIL simulator provided by DJI, then in the lab using a MoCap system and finally in the field. Since the most
challenging aspect of any mission is the landing, the controllers were judged by their effectiveness on this
task. While the controllers were tuned to land the drone on a moving platform, a static landing was used for
the comparison. The reason for this is that in a static landing there are less uncontrollable parameters that
might affect the results. In the field, the wind and current conditions might change during the comparison
affecting the results and leading to wrong conclusions. Furthermore, in the lab there is not enough space to
perform a landing in a moving platform.

The three metrics used to compare the controllers are the time it took to land the drone from the moment
of the request until the drone was resting on the platform with the motors off, the maximum overshoot and
finally the error on the landing position. The missions that the system undertakes are time critical, meaning



Controller Experiment Landing time (sec) Overshoot (m) Landing Error (m)

LQR
Simulation 8.373 0.103 0.146

Motion Capture 9.576 0.344 0.088
Outdoors 8.382 0.331 0.133

PID
Simulation 17.032 0.281 0.020

Motion Capture 15.406 0.552 0.128
Outdoors 16.833 0.355 0.101

Table 2: Landing results for the three different test types showing the mean values along the experiments
for all three metrics.
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Figure 14: (a) Box and Whiskers plots showing the landing time, overshoot and final error for the 10 field
landings; (b) The different trajectories from the follow position to the landing position.

that the drone should use its limited flight time effectively. Moreover, in cases where a mission needs to be
abruptly terminated, the drone needs to return and dock on the boat as fast as possible. As described in
Section 3, the Jetyak is equipped with a mast that holds the communication hardware and is used to host
other mission specific sensors such as an anemometer or a lidar. As a result, the maximum overshoot in the
landing process has an increased significance in order to minimize the chance of the drone crashing on the
mast. Finally, the position error shows how close to the center of the platform is the drone when it lands.
It is worth noting here that the drone is trying to land in an area around the center of the platform which
is selected to be a 15cm× 15cm square.

As mentioned earlier, the controllers were compared in all three domains: simulation, lab and field trials. In
all three domains, the drone starts on the platform, takes-off and flies to the follow position that is 1.1 meters
back and 1.6 meters up and after 20 seconds it starts the landing procedure. For the simulation results, a
total number of 30 landings were executed for each controller in 6 different wind conditions. Initially the
wind is set to zero and then it is increased to 3m/s and 4m/s in both the lateral and longitudinal directions.
In the last case, the wind is set to 3m/s in both directions. For the lab experiment, the MoCap system was
used to provide the position of the platform and the drone during five consecutive landings. Finally, two sets
of five consecutive landings were done at the field, where the position of the two platforms was provided by
the cooperative localization framework.

Table 2 shows the results for both controllers in all three domains. In all cases, the LQR controller was
able to land the drone significantly faster than the PID controller. Moreover, the overshoot is lower for
the LQR in all cases. The PID controller shows smaller errors on the landing position in most cases but
both controllers were able to land inside the predefined area. Figure 14 shows the box and whiskers plots



for the 10 field landings along with the trajectories followed in the indoor landings. One can notice that
the LQR had a more consistent behavior between the different trials. Finally, it is worth mentioning that
the measured overshoot on the static landings was higher than the one observed on landings in a moving
platform especially for the PID. As mentioned before, the two controllers were tuned to land on a moving
platform and as a result they had a more aggressive response.

Switching between the Take-Off to Follow and finally to Land states was thoroughly tested on the field
with a moving platform. The first field deployments aimed to test the separation and docking mechanism of
the system and its safety. Moreover, to test the robustness of the system, the Take-off, Follow and Land
sequence was repeated in different weather conditions. The system was able to complete the sequence even
when flying under significant side winds and with the boat swaying due to waves, as shown in Figure 15.
Finally, the sequence was also repeated consecutive times to show that the landing position is a viable
position for the drone to take-off again and repeat the process. The position of the two platforms and the
control effort of the drone during one of the field landings is shown in Figure 16. In this particular experiment
the drone was able to land on the boat in 14sec while the ASV was moving with a velocity of around 2km/h.
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Figure 15: (a) Landing under sway. Waves in the water surface can significantly affect the Jetyak’s attitude.
The figure shows the errors in the x, y and z axes along with the roll angle of the Jetyak during landing; (b)
Landing under side wind. The presence of significant side winds is affecting both platforms by introducing
a velocity in the y-axis. The figure shows the errors in the x, y and z axes along with the y-axis velocity of
the Jetyak in its body frame.

6.3 Surveying and Inspection Results

The system was tested on a number of successful field deployments in two different freshwater environments,
Lake Murray and the Congaree River, both located in South Carolina, USA. During these deployments, the
capabilities of the system were tested and its inspection effectiveness evaluated. A successful deployment is
one where the drone starts on the Jetyak, flies to the region of interest, completes its mission, then returns
to the Jetyak, and performs a landing. While both controllers were used in the field deployments, only a
small number of them were completed using the PID controller and the vast majority was done using the
LQR controller.
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Figure 16: (a) The position of the Jetyak and the UAV during a field landing in a local ENU system. The
blue line is the UAV position and the red solid line is the Jetyak position. The red dashed lines show the
landing constraints; (b) The landing error on the UAV’s body frame. Notice that the heading affects the X
and Y axes errors; (c) The control effort commands of the drone during landing.

To show the capability of the UAV to provide a bird’s-eye-view perspective to the boat, a series of deployments
were done with the drone following the ASV while the latter was following a trajectory autonomously using
way-point navigation. In these tests, the Jetyak would start following a desired trajectory and at some point
it would deploy the drone in order to get the augmented field of view. The drone would follow behind the
ASV in a safe distance while tracking the position of the Jetyak in a local world frame. When the ASV had
finished its trajectory it would signal the UAV to start the landing procedure.

The Leave mode is designed to control the UAV when it operates remotely. As described in section 5.1, the
system can use predefined waypoints in order to cover an area of interest and gather data. In our deployments,
three different types of missions were completed. First, the drone would move from the Follow position to
a single waypoint where the mode would switch to Hover in order to fly in position and wait for further
instructions. This type of mission is useful when information about a specific region needs to be gathered for a
duration of time. As an example, in the case that the Jetyak needs to traverse a GPS degraded environment,
the drone would fly in a position with good GPS coverage and stay there while tracking the Jetyak’s position.
In the second type, the drone would move to a waypoint and then a spiral pattern generator would produce a
number of waypoints to create a spiral trajectory of the desired radius and number of rotations. This type of
experiment is used in surveying missions to map an area of interest. Finally, using three different waypoints,
a quadrilateral trajectory can be generated with the desired number of sweeps. This type of mission can
either be used for surveying and mapping or for the inspection of a structure. The trajectories of a spiral
trajectory mission and a quadrilateral trajectory mission, can be seen in Figure 17.



(a) (b)

Figure 17: The trajectories of the UAV (orange) and ASV (blue) during (a) a spiral survey of the docks and
(b) a bridge inspection.

(a) (b)

Figure 18: Mosaic created from spiral survey of a dock and shore in (a) winter and (b) summer. The change
in the water level is noticeable as well as the blooming of the near shore vegetation. The spiral trajectory
that resulted in the mosaic in (b) can be seen in Figure 17 (a).

The primary application of the system is to automate surveys of near-shore environments and inspections
of structures. In Lake Murray, a dock and its surrounding area were surveyed 6 months apart to show
the change in the surrounding area over that period. Figure 17(a) shows the mission trajectory for the
summer deployment while Figure 18 shows the high definition maps created from the survey data using the
automatic stitching method described in (Brown and Lowe, 2007). One can see the change in the water level,
the difference in the vegetation as well as the boards of the dock which have been replaced in the structure.

To demonstrate the inspection capabilities of the system, a bridge at Congaree river was selected for inspec-
tion. There, the system was deployed multiple times to take videos of the structure and the surrounding area
from different angles with Figure 17(b), showing one of such deployments. Using COLMAP (Schönberger
and Frahm, 2016; Schönberger et al., 2016), a Structure-from-Motion software, a dense 3D reconstruction of
the structure was generated as shown in Figure 19. The bridge under inspection, the surrounding environ-
ment and the nearby transmission towers can all be seen in the reconstruction. This reconstruction can be
used to assess the state of the bridge, measure the water level and monitor the surrounding environment.



Figure 19: Dense rendering of the inspected bridge and its surrounding environment at 33.753000N,
80.645223W. The trajectory of the mission that resulted in this rendering is shown in Figure 17 (b).

7 Lessons Learned and Future work

During the six month span of field deployments, we had the opportunity to thoroughly test the system under
different conditions that shaped our final system design. One of the most critical parts of the development
was the tag detection and localization system design. By choosing to use AR tags we maximized the rate
of positioning measurements but this also created the need for adding a robust outlier rejection in our
framework. While initially we used laminated prints for our tag bundles, later on we replaced them with
prints in aluminum sheets. The later had a less reflective surface that was not affected by flapping or warping.

The extensive period of field trials showed that the most suitable weather conditions for deployment was
overcast with low wind speeds. In sunny days, the reflection of the sun in the landing pad would obscure a
large portion of the tag bundle rendering it undetectable. To limit the effect of such reflections, we mounted a
polarized neutral density filter to the camera. Since both of the platforms used are light for their domains, the
wind was able to affect the motion of both platforms making their control harder. Even without significant
wind conditions though and with the ASV idling, the draft generated from the UAV propellers was able to
push around the ASV making the landing process challenging even in such conditions.

The landing platform is another important part of the developed system. The platform needs to ensure
that the UAV will be safelly docked while it is ferried to and from positions of interest. In our current
design, a thread that runs across the landing platform is used as a safety mechanism. Future work includes
improvements in this area with an effective locking mechanism that will allow the Jetyak to move faster or
operate in adverse weather conditions. Other improvements to the platform can be self-leveling capabilities
(Conyers et al., 2015) to compensate for the ASV’s motion and charging capabilities (Malyuta et al., 2019)
to further increase the operation time of the UAV.

In all of our field deployments, safety pilots for both the UAV and the ASV were present on site. While all the
results presented in this work are from fully autonomous deployments, there were cases that the safety pilot
had to intervene and stop the process. One case is when a platform will approach an obstacle, since none
of the platforms has any active obstacle avoidance capability. The lack of obstacle avoidance capabilities is
also the reason why in the Return state the UAV first ascents to 10m and then moves towards the Jetyak



so that it can safely fly above any obstacles or vegetation.

Another case where a safety pilot must intervene is after a number of failed attempts to successfully implement
the Return state. As described in Section 5.1, if a visual tether is not established during the last phases of
the Return state, the process repeats. If the colocalization framework has significantly diverged, the UAV
might not be able to locate the ASV. In such a case, the UAV relies on the safety pilot to intervene and
find a safe landing spot before the battery runs out. To increase the autonomy level of the proposed design,
an obstacle avoidance framework needs to be added as well as a safety measure for autonomous emergency
landing when the ASV cannot be detected.

While this work focuses on the UAV subsystem, future work will explore more the ASV subsystem and how
it can be augmented with the use of the companion UAV. Since the communication framework between the
two platforms has been already developed, what remains to be done is to develop further ASV capabilities
that will use the relayed information to augment its control and operation, followed by another long term
testing campaign.

8 Conclusion

A marsupial robotic system composed of a UAV and an ASV is presented in this work. This heterogeneous
robotic team exploits the advantages of each platform to increase the application range of the system. Taking
advantage of the long operation time of the ASV, the UAV can be ferried to a remote location and thus
increase its operation range. By utilizing the increased field of view that a flying platform can provide, the
ASV can safely and efficiently navigate dangerous regions. Furthermore, the UAV can be used as a surveying
and inspection platform generating high quality maps and 3D reconstructions of freshwater environments
and structures. A large number of successful field trials demonstrate the capabilities of the proposed system
as an autonomous surveying, inspection, and monitoring system.
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